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Abstract: Today’s increasing variety of media data results in a great diversity of XML-

based metadata, which describes the media data on semantic or syntactic levels, in order 

to make it more accessible to the user. This metadata can be of considerable size, which 

leads to problems in streaming scenarios. Other than media data, XML metadata has no 

concept of “samples”, thus inhibiting streamed (and timed) processing, which is natural 

for media data. In order to address the challenges and requirements resulting from this 

situation, the concept of streaming instructions is introduced. In particular, streaming 

instructions address the problem of fragmenting metadata, associating media segments 

and metadata fragments, and streaming and processing them in a synchronized manner. 

This is achieved by enriching the metadata with additional attributes to describe media 

and XML properties. Alternatively, a style sheet approach provides the opportunity to 

dynamically set such streaming properties without actually modifying the XML 

description. 

1 Motivation and Scope 

The role of XML-based metadata for describing distributed, advanced multimedia content 

gains more and more popularity in order to increase the access of such contents from 

anywhere and anytime. In the past, two main categories for this kind of metadata have 

become apparent [Fo06]. The first category of metadata aims to describe the semantics of the 

content such as keywords, violence ratings, or classifications. Metadata standards supporting 

this category are MPEG-7, TV Anytime, and SMPTE among others [AKS03]. The second 
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category of metadata does not describe the semantics, but rather the syntax and structure of 

the multimedia content. This category spans a wide range of research activities enabling 

codec-agnostic adaptation engines for scalable contents by providing languages for 

describing the bitstream syntax. Examples for such languages are the Bitstream Syntax 

Description Language (BSDL) as specified in MPEG-21 DIA [Ve04], BFlavor [De06], and 

XFlavor [HE02]. Note that MPEG-7 also provides means for describing syntactical aspects 

of multimedia bitstreams [BS06]. 

Both categories of metadata (semantic and syntactic descriptions) have in common that they 

are desired to become more and more detailed, as this increases the accessibility of the media 

content. They often describe the content per segment or even per access unit (AU), which are 

the fundamental units for transport of media streams and are  defined as the smallest data 

entity which is atomic in time, i.e., to which a  single decoding time can be attached. For 

example, a single violence rating for the whole movie might exclude many potential 

consumers if it contains only one or two extremely violent scenes. However, if the violence 

rating is provided per scene, for instance, the problematic scenes could simply be skipped for 

viewers who do not wish to see them. Similarly, if a scalable multimedia content only 

describes the temporal enhancement layers, terminals requiring spatial adaptation (e.g., a 

mobile device) are excluded. Again, more descriptive metadata (i.e., describing spatial, 

temporal, and fine-grained scalability) would increase the accessibility of the content. As a 

consequence, this metadata is often of a considerable size, which – even when applying 

compression – is problematic in streaming scenarios. That is, transferring entire metadata 

files – if possible at all – before the actual transmission of the media data, could lead to a 

significant startup delay. Additionally, there is no information on how this metadata is 

synchronized with the corresponding media, which is necessary for streamed (i.e., piece-

wise) processing thereof. The concept of piece-wise (and timed) processing is natural for 

media data. For example, a video consists of a series of independent pictures which are 

typically taken by a camera. These independent pictures are then encoded, typically 

exploiting the redundancies between these pictures. The resulting AUs can depend on each 

other (e.g., in the case of bidirectional encoded pictures) but are still separate packets of data. 

Although the characteristics of content-related metadata are very similar to those of timed 

multimedia content, no concept of “samples” exists for this metadata today. 

In this paper we introduce the concept of “samples” for metadata by employing streaming 

instructions for both XML metadata and media data. The XML streaming instructions specify 

the fragmentation of the content-related metadata into meaningful fragments and their timing. 

These fragments are referred to as process units (PUs), which introduce the “samples” 

concept – known from audio-visual content – to content-related metadata. The media 

streaming instructions are used to locate AUs in the bitstream and to time them properly. 

Both types of streaming instructions enable time-synchronized, piece-wise (i.e., streamed) 

processing and delivery of media data and its related metadata. Furthermore, the 

fragmentation mechanism helps to overcome the startup delay introduced by the size of the 



metadata. Another, less obvious, benefit is described in an application scenario (see Section 

5) where the streaming instructions enable to extend an existing static media adaptation 

approach to dynamic and distributed use cases.  

Section 2 summarizes the requirements for the streaming instructions. Related work is 

discussed in Section 3. Section 4 describes the streaming instructions in detail. An 

application scenario, which illustrates the benefits of the streaming instructions, is presented 

in Section 5. Section 6 provides a performance evaluation of the streaming instructions and 

of an adaptation server which facilitates the streaming instructions to enable dynamic and 

distributed adaptation. Section 7 concludes this paper and points out possible future work 

items. 

2 Requirements 

This section lists the basic requirements, which we identified for the streaming of metadata 

and related media data:  

― The streaming instructions need to describe how metadata and/or associated media data 

should be fragmented into PUs (for metadata) and AUs (for media data) respectively, for 

processing and/or delivery.   

― A PU has to be well-formed (w.r.t. an XML schema) and needs to be able to be consumed 

as such by a terminal (i.e., no other fragments are needed to consume it). This enables 

piece-wise processing and it also enables to re-use existing tools for processing the 

metadata (see Section 5 for an example). 

― The streaming instructions shall enable to assign a timestamp to a PU and/or an AU 

indicating the point in time where the fragment shall be available to a terminal for 

consumption. 

― The streaming instructions need to provide mechanisms, which allow a user to join a 

streaming session that is in progress. This means that one needs to be able to signal when 

a PU and/or AU shall be packaged in such a way that random access into the stream is 

enabled. 

― It shall be possible to apply the streaming instructions without modifying the original 

XML document as there may be use cases, where it is not possible or feasible to modify 

the multimedia content and its metadata, e.g., due to digital rights management issues. 

― A streaming instructions processor shall work in a memory and runtime efficient way. 

3 Related Work 

In this section we review related work in the literature that deals with mechanisms enabling 



streamed processing and transport of multimedia content and related metadata. Multiple 

mechanisms for specifying the fragmentation and timing of media content are well known, 

e.g., the sample tables of the ISO Base Media File Format [BMF]. The difference is that in 

our approach this information is specified as a part of the metadata. This coupling provides a 

common way for a user to specify the fragmentation and timing of both media and metadata.  

MPEG is currently standardizing so called Multimedia Application Formats, which aim at 

combining technology from MPEG and other standardization bodies to specify a specific 

application, e.g., a photo player and a music player [DPC05]. All these applications employ 

XML metadata and currently either use it only on a track/movie level or they use mechanisms 

from the ISO Base Media File Format to provide the timing of more dense metadata. 

However, this requires that the metadata is already fragmented beforehand and that the 

metadata is therefore no longer available in its original format for non-streamed processing.  

Wong et al. [WCL03] define a method for fragmenting an XML document for optimized 

transport and consumption, preserving the well-formedness of the fragments. However, what 

is consumed are not the fragments themselves but rather the document resulting from the 

aggregation of the fragments. Furthermore, the fragmentation is achieved according to the 

size of the Maximum Transport Unit (MTU) and not based on the semantics of the fragment, 

i.e., no syntax is provided for a content author to specify which fragments should be 

consumed at a given time.  

Alternatively, MPEG-7 provides an encoding method (Binary Format for XML) to 

progressively deliver and consume XML documents in an efficient way [Ni02]. Therefore, 

so-called Fragment Update Units (FUUs) provide means for altering the current description 

tree by adding or removing elements or attributes. However, MPEG-7 only specifies the 

syntax of FUUs and its decoding, whereas our work concentrates on the composition of XML 

fragments.  

Interestingly, in both cases above, no timing information is provided which enables the 

synchronized use of the metadata and the corresponding multimedia content. 

The Continuous Media Markup Language (CMML) [PPP04] is an XML-based mark-up 

language for time-continuous data similar to MPEG-7. Together with the Annodex file 

format [PPP05] it allows to interleave time-continuous data with CMML mark-up in a 

streamable manner. This approach is specific to CMML whereas in our work we aim to offer 

a generic solution for time-synchronized, streamed processing and transport for media and 

related metadata. 

The Synchronized Multimedia Integration Language (SMIL) [Ru01] provides a timing and 

synchronization module which can be used to synchronize the play-out of different media 

streams. However SMIL is only concerned with media as a whole and therefore no AU 



location, fragmentation, and timing for metadata are provided. 

The Simple API for XML (SAX) is an event-based API which allows streamed processing of 

XML [Si03]. It allows to parse an XML document without loading the complete document 

into memory. This does help to avoid the startup delay for streamed processing. However, 

legacy applications which rely on DOM would need to be re-implemented (e.g., the example 

application in Section 5). Moreover, no timing or fragmentation information is provided for 

piece-wise and synchronized processing of media and metadata. However, SAX might further 

increase the performance of our current implementation where we currently use an XML Pull 

Parser (see Section 6). 

Our concept is close to a mechanism provided by Scalable Vector Graphics (SVG) [Qu03] to 

indicate how a document should be progressively rendered: the 

externalResourcesRequired attribute added to an element specifies that the 

document should not be rendered until the sub-tree underneath is completely delivered. This 

mechanism is specific to SVG. With this mechanism, the last state of the output document is 

the input document itself. In contrast, our method allows isolating a fragment that can be 

consumed at a given time, but this fragment does not need to contain the previous one. In 

particular, it is possible to progressively consume a document without ever the need of 

loading the full document into memory since only a fragment is consumed at a time.  

To the best of our knowledge, the concept of PU and in particular the method we developed 

for specifying their composition, processing, and their transport in conjunction with media 

fragments is therefore original.  

4 Streaming Instructions 

We introduce three different mechanisms to respond to the requirements described in Section 

2: 

1. The XML streaming instructions describe how XML documents shall be fragmented 

and timed.  

2. The media streaming instructions localize AUs in the bitstream and provide related 

time information.  

3. Finally, the properties style sheet provides means to describe all of the above 

properties in a separate document, rather than directly in the metadata. 

The XML and media streaming instructions are defined as properties. The properties are 

abstract in the sense that they do not appear in the XML document, but augment the element 

information item in the document infoset [XIS04]. They can be assigned to the metadata by 

using XML attributes and/or by the properties style sheet specified in Section 4.3. 



Additionally, an inheritance mechanism is defined for some of these properties: the value of 

the property is then inherited by all descendant elements until the property is defined with a 

different value which then supersedes the inherited value, and is itself inherited by the 

descendants. Lastly, a default value is specified for each property. 

In the sequel, we will introduce the mechanisms listed above separately and then combine 

them as they are applied to a specific scenario in Section 5. 

4.1 XML Streaming Instructions 

The XML streaming instructions provide the information required for streaming an XML 

document by the composition and timing of PUs. The XML streaming instructions allow 

firstly to identify PUs in an XML document and secondly to assign time information to them.  

A PU is a set of connected XML elements. It is specified by one element named anchor 

element and by a PU mode indicating how other connected elements are aggregated to this 

anchor to compose the PU. Depending on the mode, the anchor element is not necessarily the 

root of the PU. Anchor elements are ordered according to the navigation path of the XML 

document. PUs may overlap, i.e. some elements (including anchor elements) may belong to 

several PUs. Additionally, the content provider may require that a given PU be encoded as a 

random access point, i.e. that the encoded PU (the AU) does not require any other AUs to be 

decoded. 

Figure 1 illustrates how an XML document is fragmented and timed using the XML 

streaming instructions. The fragmenter uses as input the XML document to be streamed and a 

set of XML streaming instructions properties provided either internally (as XML attributes 

with the XMLSI namespace) and/or externally (with a properties style sheet as specified in 

Section 4.3). The output of the fragmenter is a set of timed PUs. 

 

Fragmenter 

PU PU PU

t1t2 t3 

XML document (+ XMLSI attributes) XMLSI Properties Style Sheet

 

Figure 1: Processing related to XML streaming instructions 

The fragmenter parses the XML document in a depth-first order. XML streaming instructions 

properties are computed as explained below.  An element with the pu property set to true 

indicates an anchor element and a new PU. The PU then comprises connected elements 

according to the puMode property of the anchor element. 



In the following the XML streaming instructions properties, as listed in Table 1, are specified 

for: 

― Fragmenting an XML document into PUs. 

― Indicating which PUs shall be encoded as random access point. 

― Assigning time information (i.e., processing time stamp) to these PUs. 
 

Table 1: XML streaming instructions properties 

Name Possible Values Inherited Default Value 

anchorElement undefined, false, true no undefined 

puMode 
undefined, self, ancestors, descendants, ancestorsDescendants, 

preceding, sequential 

yes undefined 

encodeAsRap undefined, false, true yes undefined 

timeScale undefined, an integer value yes undefined 

ptsDelta undefined, an integer value yes undefined 

absTimeScheme undefined, a string value yes undefined 

absTime undefined, a string value no undefined 

pts undefined, an integer value no undefined 

The puMode property specifies how elements are aggregated to the anchor element 

(identified by the anchorElement property) to compose a PU. Figure 2 gives an overview 

of the different puModes, which were derived by analyzing various types of metadata (as 

introduced above) and their applications (see Section 5 for a detailed description of an 

example application). The objective was to constrain ourselves to as few puModes as 

possible, while still supporting all sensible applications, in order to enable an efficient 

implementation. The semantics of the different puModes are as follows, given that the white 

node in Figure 2 contains an anchorElement property which is set to true: 

 

Figure 2: Examples of the different puModes 

self: the PU contains only the anchor element. 

ancestors: the PU contains the anchor element and its ancestors stack, i.e. all its ancestor 

elements. 

descendants: the PU contains the anchor element and its descendant elements. 

ancestorsDescendants: the PU contains the anchor element, its ancestor and descendant 

elements. 



preceding: the PU contains the anchor element, its descendant and parent elements and all 

the preceding-sibling elements of its ancestor elements and their descendants. 

precedingSiblings: the PU contains the anchor element, its descendant and parent elements 

and all the preceding-sibling elements (and their descendants) of its ancestor element. 

sequential: the PU contains the anchor element, its ancestors stack and all the subsequent 

elements (descendants, siblings and their ancestors) until a next element is flagged as an 

anchor element. 

The encodeAsRAP property is used to signal that the PU should be encoded as a random 

access point in order to enable random access into an XML stream. The timeScale 

property provides the number of ticks per second. The ptsDelta property specifies the 

interval in time ticks after the preceding anchor element. Alternatively, the pts property 

specifies the absolute time of the anchor element as the number of ticks since the origin. The 

timing can not only be specified in ticks: the absTime property specifies the absolute time 

of the anchor element. Its syntax and semantics are specified according to the time scheme 

used (absTimeScheme property), e.g., NPT, SMPTE or UTC. 

4.2 Media Streaming Instructions 

The media streaming instructions specify two sets of properties for annotating an XML 

document. The first set indicates the AUs and their location in the described bitstream, the 

random access points, and the subdivision into AU parts. The second set provides the AU 

time stamps. 

Figure 3 illustrates how AUs in a bitstream are located and timed using the media streaming 

instructions. The fragmenter uses as input the bitstream to be streamed and a set of media 

streaming instructions provided either internally (as attributes) and/or externally (with a 

properties style sheet). The output of the fragmenter is a set of timed AUs. 

 

Figure 3: Processing related to media streaming instructions 

The fragmenter parses the XML document in a depth-first order.  The media streaming 

instructions properties are computed as specified below. Anchor elements (i.e., elements with 

the au property set to true) are ordered according to the parsing order and so are the 

XML (+ MSI attributes) 

Fragmenter 

MSI Properties Style Sheet 

AU AU AU 

t1 t2 t3 

Bitstream 



corresponding AUs. An anchor element indicates the start of an AU, the extent of which is 

specified by the auMode property.  

In the following, the media streaming instructions properties, as listed in Table 1, are 

specified for: 

― Locating AUs in the bitstream. 

― Indicating which AUs shall be encoded as random access point. 

― Assigning time information (i.e., processing time stamp) to these AUs. 
 

Table 2: Media streaming instructions properties 

Name Possible Values Inherited Default Value 

auMode tree, sequential yes tree 

au undefined, false, true no undefined 

auPart undefined, false, true no undefined 

rap undefined, false, true yes undefined 

timeScale undefined, an integer value yes undefined 

dts undefined, an integer value no undefined 

cts undefined, an integer value no undefined 

dtsDelta undefined, an integer value yes undefined 

ctsOffset undefined, an integer value yes undefined 

addressUnit bit, byte yes undefined 

start undefined, an integer value no undefined 

length undefined, an integer value no undefined 

 

The media streaming instructions, as listed in Table 2, are tailored to metadata which can 

linearly describe a bitstream on an AU granularity, such as BSD, gBSD [Ve04], BFlavor 

[De06], XFlavor [HE02] or MPEG-7 MDS [Si01]. The start of an AU is indicated by an 

element with an au property set to true. This element is named anchor element. The media 

streaming instructions indicate the start and the length of an AU in bits or bytes 

(depending on the addressUnit property). The extent of the AU depends on the value of 

the auMode property of the anchor element as depicted in Figure 4 (the white node indicates 

an element with the au property set to true). In the sequential mode, the AU extends until a 

new element is found with an au property set to false or true. If no element is found with an 

au property set to true or false, the AU extends until the end of the bitstream. In the tree 

mode, the AU is the bitstream segment described by the XML sub-tree below the element 

flagged with the au property set to true. AU parts are defined in a similar way. The start of a 

new AU part in an AU is indicated by an auPart property set to true and the extent is 

specified by the auMode property. In the sequential mode, the AU part extends until a new 

element has an auPart property set to false or true (in the latter case, a new AU part 

immediately follows), until the end of the AU, or until the end of the media bitstream. In the 

tree mode, the AU part is the bitstream segment corresponding to the sub-tree below the 



element flagged by the auPart property.  The auPart property provides a way for 

indicating AU parts within an AU in a coding format independent way. In this way, a 

streaming server that is not aware of the format of the streamed media content may 

nevertheless meet the requirements of a specific RTP payload format, e.g., special 

fragmentation rules. 

 

Figure 4: Examples of the different AUModes 

Other information about AUs is specified by the properties of the anchor element. In 

particular, the AU is a random access point if the rap property of the anchor element is set 

to true. The rap property is inheritable, and it is therefore possible to inherit this property to 

each AU (i.e., each AU is a RAP) by setting the rap property of the XML root element to 

true. The time information of the AU (CTS and DTS) is also specified by the properties of 

the anchor element as explained below. The media streaming instructions use an absolute and 

a relative mode for specifying time information. In absolute mode, the CTS and DTS of an 

AU are specified independently from other AUs. In relative mode, the CTS and DTS are 

calculated relatively to the CTS and DTS of the previous AU. Both modes can be used in the 

same document. For example, an absolute date can be applied to a given AU, and the CTS 

and DTS of the following AUs are calculated relatively to this AU. In both modes, CTS and 

DTS conform to a time scale, i.e. they are specified as a number of ticks. The duration of a 

tick is given by the time scale which indicates the number if ticks per second, which allows 

for fine granular timing of AUs. The time scale is specified by the timeScale property. 

The two properties cts and dts define the CTS and DTS of the AU, expressed as an 

integer number of ticks. They are not inheritable and may be applied to an anchor element for 

specifying the CTS and DTS of the corresponding AU. Alternatively, two properties named 

dtsDelta and ctsOffset allow calculating the DTS and CTS of the AU relatively to the 

previous AU. The dtsDelta property indicates the time interval in ticks between the 

current AU and the previous one. The ctsOffset property indicates the time interval in 

ticks between the DTS and the CTS of the current AU. Some media codecs do not require a 

CTS information. In this case, the cts and ctsOffset properties are not used and may be 

undefined. 

For each anchor element, the properties of the corresponding AU are then calculated as 

follows: 

if isPresent(dts(n)) {  DTS(n) = dts(n); } else { 

 if n = 0 {  // i.e., first AU 



  DTS(n) = 0; 

 } else { DTS(n) = ((DTS(n-1) + DTS_DELTA(n-1))/TIME_SCALE(n-1)) *  TIME_SCALE(n) ; } 

} 

if isPresent(cts(n)) { CTS(n) = cts(n); } else {  CTS(n) = DTS(n) + ctsOffset; } 

TIME_SCALE(n) = timeScale(n); DTS_DELTA(n) = dtsDelta(n); RAP(n) = rap(n); 

 

Here dts(n), cts(n), timeScale(n), dtsDelta(n), ctsOffset(n), rap(n) represent the media 

streaming instruction properties of the nth anchor element, and DTS(n), CTS(n), 

TIME_SCALE(n), DTS_DELTA(n) and RAP(n) represent the properties of the associated 

n
th

 AU. 

4.3 Properties Style Sheet 

It is also possible to specify the XML and media streaming instructions properties without 

adding XML attributes to the original document. This is in particular useful when associated 

Digital Rights Management (DRM) information forbids editing the original document and/or 

where the properties are set according to a regular pattern, as this reduces the overhead 

introduced by the streaming instructions. It also eases the management of multiple media 

contents (and their related metadata) which are fragmented and timed in the same way. Then, 

instead of annotating each XML document a single properties style sheet can be used. This 

external document specifies a set of properties which should be set for all elements matching 

a given pattern. For expressing such patterns, we introduce a new expression language named 

Lightweight Expression language (LXPath) based on STXPath. STXPath is an expression 

language developed in the context of STX (Streaming Transformations for XML) [STX04], a 

transformation language enabling the streamed transformation of an XML document, i.e., 

without building a tree in memory. The syntax of STXPath is similar to XPath [XPL99], but 

its semantics differ. Whereas an XPath expression is resolved against the full document, an 

STXPath expression is resolved against a limited context consisting of the current element, 

its ancestor’s stack and its position within siblings. For example, in XPath, the expression 

/node1/node2 returns a sequence containing all node2 elements, whose parent element 

is the document element and is named node1. In LXPath, on contrary, the same expression 

returns a sequence containing a single node from this node-set; the one which is an ancestor 

of the current node. The use of STXPath expressions as matching patterns enables filtering an 

XML document without loading the full tree into memory, and is suitable for efficient SAX-

based architectures. In our approach, we define a limited subset of STXPath required for 

locating elements in an efficient and simple way. 

<?xml version="1.0"?> 

<schema version="ISO/IEC 21000-7:2004/Amd.2" id="PSS.xsd" 

  xmlns="http://www.w3.org/2001/XMLSchema" 

  xmlns:ps="urn:mpeg:mpeg21:2003:01-DIA-PSS-NS" 

  targetNamespace="urn:mpeg:mpeg21:2003:01-DIA-PSS-NS"> 



  <element name="properties"><complexType><sequence> 

   <element name="template" minOccurs="0" maxOccurs="unbounded"> 

    <complexType><sequence> 

     <element name="property" minOccurs="0" maxOccurs="unbounded"> 

      <complexType> 

       <attribute name="name" type="QName" use="required"/><attribute name="namespace" type="anyURI"  

        use="optional"/><attribute name="value" type="string" use="required"/> 

    </complexType></element></sequence> 

    <attribute name="match" type="string" use="required"/> 

</complexType></element></sequence></complexType></element></schema> 

Document 1: Properties Style Sheet XML Schema 

As shown in Document 1, the properties style sheet consists of a sequence of templates 

specified by a matching pattern expressed in LXPath and containing a list of properties 

defined by a qualified name and a value. This properties style sheet and LXPath are designed 

in a way such that properties can be applied on-the-fly in a SAX-based architecture. While 

parsing the original document with a SAX parser, each new element is matched against each 

of the templates, and the corresponding properties are set accordingly. 

Table 3: Grammar for LXPath in EBNF notation 

MatchPattern ::= BoolExpr 

BoolExpr ::= Expression ( "|" Expression)* 

Expression ::= ( "/" | "//" )? PathStep (( "/" | "//" ) PathStep )* 

PathStep ::= (QName | WildCard) Predicate* 

WildCard ::= "*" | ( "*" ":" NCName) | ( NCName ":" "*") 

Predicate ::= "[" PredicateExpr "]" 

PredicateExpr ::= OrExpr 

OrExpr ::= AndExpr ( ("or" | "|") AndExpr )* 

AndExpr ::= ComparisonExpr ( "and" ComparisonExpr )* 

ComparisonExpr ::= AdditiveExpr ( GeneralComp AdditiveExpr )? 

GeneralComp ::= "=" | "!=" | "<" | "<=" | ">" | ">=" 

AdditiveExpr ::= MultiplicativeExpr ( ("+" | "-") MultiplicativeExpr )* 

MultiplicativeExpr ::= PrimaryExpr ( ("*" | "div" | "idiv" | "mod") PrimaryExpr )* 

PrimaryExpr ::= AttrExpr | Function | StringLiteral | NumericLiteral 

AttrExpr ::= "@" NCName 

Function ::= "position()" 

StringLiteral ::= "'" Char* "'" 

NumericLiteral ::= IntegerLiteral | DecimalLiteral 

IntegerLiteral ::= ("-" | "+")? Digits  

DecimalLiteral ::= ("-" | "+")? ("." Digits) | (Digits "." [0-9]*) 

Digits ::= [0-9]+ 

NCName ::= [http://www.w3.org/TR/REC-xml-names/#NT-NCName]  

QName ::= [http://www.w3.org/TR/REC-xml-names/#NT-QName]  

Char ::= [http://www.w3.org/TR/REC-xml/#NT-Char]  

 



The complete grammar of LXPath is shown in Table 3 specified in Extended Backus-Naur 

Form (EBNF) notation with MatchPattern as entry point. An example for a properties style 

sheet can be found in Section 5.3. 

5 Application: MPEG-21 BSD-based Digital Item Adaptation 

MPEG-21 BSD-based adaptation [Ve04] represents a codec-agnostic adaptation approach 

utilizing XML-based BSDs and exploiting the characteristics of scalable coding formats. It 

has been adopted as part of the MPEG-21 multimedia framework and is briefly described in 

the following. 

The characteristics of scalable coding formats enable the generation of a degraded version of 

the original media bitstream by means of simple remove operations followed by minor update 

operations, e.g., removal of spatial layers and updates of certain header information 

comprising the horizontal and vertical resolution. A BSD is an XML document which 

describes a (scalable) bitstream enabling its adaptation in a codec-agnostic way. Only the 

high-level bitstream structure is described, i.e., how it is organized in terms of packets, 

headers, or layers. The level of detail of this description depends on the bitstream 

characteristics and the application requirements. The Adaptation Quality of Service 

description (AQoS) describes how a media content (segment) needs to be adapted in order to 

correspond to the various usage environment situations, e.g., how many quality layers need to 

be dropped to correspond to the currently available network bandwidth. 

5.1 State of the Art: Static Adaptation 

Figure 5 depicts an adaptation server. The adaptation comprises an adaptation decision taking 

process resulting in an adaptation decision, which guides the BSD transformation. The 

transformed BSD then steers the bitstream generation process [VT05][TDV06]. The 

Adaptation Decision Taking Engine (ADTE) computes an adaptation decision based on the 

current usage environment description and the AQoS. This adaptation decision is the input to 

the BSD transformation process which transforms the BSD, e.g., by using standardized XML 

transformation languages such as XSLT. The bitstream generation process (BSDtoBin) 

parses the transformed BSD and generates the adapted media bitstream by using the 

bitstream offsets and parameter values of the remaining BSD elements. Only the bitstream 

segments described by the remaining BSD elements are copied to the output bitstream 

whereas all other segments are skipped. The output bitstream (and optionally its XML 

metadata) is then provided to a media consumer, e.g., an end device or a network node which 

performs further adaptation steps. Due to the fact that the BSD describes the complete 

bitstream, any adaptation which is performed always impacts the complete bitstream. No 



piece-wise adaptation to a dynamically changing usage environment is possible. Further 

disadvantages when applying this approach to streaming scenarios include: 

― High memory requirements due to the need to parse the complete BSD into memory 

for the adaptation 

― High startup delay in streaming scenarios, since any adaptation impacts the complete 

bitstream 

― Slow reaction to dynamically changing usage environment in streaming scenarios, 

since any adaptation impacts the complete bitstream 

5.2 Using Streaming Instructions to Enable Dynamic and Distributed Adaptation 

This section describes and illustrates how the streaming instructions described above can be 

used to extend the static MPEG-21 DIA approach towards dynamic and distributed 

adaptation scenarios. Figure 6 depicts how we integrated the streaming instructions with the 

BSD-based adaptation approach in an adaptation server in order to enable dynamic and 

distributed adaptation. The BSD is provided, together with the XML streaming instructions, 

to the XML fragmenter. The fragmenter then determines the next PU from the BSD and 

assigns a time stamp to it, as described in Section 4.1. This PU is then transformed using the 

XSLT in the same way as a complete BSD would be transformed (as described in Section 

5.1). The transformed PU is forwarded to the so-called BSDtoBinAU processor, which 

combines the functionality of the normative BSDtoBin processor and the media fragmenter. 

We decided to combine these two processors due to performance reasons. If the BSDtoBin 

processor cannot be modified, e.g., because it is implemented in hardware, the media 

fragmenter can be executed independently before the BSDtoBin processor. The 

BSDtoBinAU processor has the appropriate media AU and its time stamp available, thanks to 

the media streaming instructions. In the next step the BSDtoBinAU processor adapts the 

media AU order to correspond to the transformed PU. The transformed PUs, which are still 

represented in the text domain, are then encoded into AUs using a proper encoding 

mechanism. This can for example be a mechanism as basic as a general compression program 

such as WinZip or gzip. Another possibility would be to use XML-aware compression 

mechanisms such as XMLPPM [HAY06]. Another way to encode the PUs is to use a specific 

binary codec for XML such as the MPEG-7 Binary XML codec (BiM) [Ni02]. BiM is a 

schema-aware encoding mechanism which, if properly configured, removes any redundancy 

which exists between consecutive PUs. The redundancy, resulting from the requirement that 

PUs need to be able to be processed independently, is removed and only the new information 

is encoded into AUs (except for when a PU is declared as a RAP). Several studies have been 

performed on XML compression in the past [CW02][DB05][Su06]. In our own evaluations 

which also consider streaming support, BiM proved to be the most efficient way to encode 



PUs [RTH05]. 

After encoding the PUs into BiM AUs, the media and BSD AUs are packetized for transport. 

In this step the timing information provided by media and XML streaming instructions is 

mapped onto the transport layer (RTP in our case), by including it into the packet header. 

Both the media and BSD AUs are then streamed into the network, where an adaptation proxy 

could perform additional adaptation steps or to an end device where the dynamically adapted 

media is consumed. In this case, the transport of the metadata may be omitted.  
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Figure 5: Static BSD-based Adaptation 

Approach 

Figure 6: Dynamic BSD-based Adaptation 

Approach 

Other content-related metadata which does not have fragmentation or timing requirements is 

not streamed but provided using other out-of-band mechanisms, e.g., as attributes in the 

Session Description Protocol (SDP) [SDP]. The normative behavior of the MPEG-21 DIA 

mechanisms is not changed by integrating the streaming instructions. 



5.3 Example 

In this section we provide example code for the mechanisms described above. 

Document 2 shows an MPEG-21 DIA BSD which includes media and XML streaming 

instructions in order to enable dynamic processing of the BSD and the described media. In 

this example, each top-level gBSDUnit describes an AU of the MPEG-4 Scalable Video 

Codec [SMW06], including its start and length in bit (as indicated by the addressUnit 

attribute). As can be seen, the BSD already provides attributes for addressUnit, start 

and length. The fragmenter therefore uses the values in these attributes rather than 

duplicating them in the corresponding streaming instructions attributes. Within an AU, each 

gBSDUnit describes a single layer of the SVC stream. The layer is identified by the marker 

attribute value, which for the first layer of the second AU states that it is the first FGS layer 

of the first spatial layer which belongs to the first temporal layer (“T0:S0:F0”). 

<dia:DIA xmlns:xmlsi="urn:mpeg:mpeg21:200x:01-SI"  xmlns:msi="urn:mpeg:mpeg21:200x:01-MSI" 

 xmlns:dia="urn:mpeg:mpeg21:2003:01-DIA-NS" xmlns="urn:mpeg:mpeg21:2003:01-DIA-gBSD-NS" 

 xmlns:bs1="urn:mpeg:mpeg21:2003:01-DIA-BSDL1-NS" xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance"  xmlns:xsd="http://www.w3.org/2001/XMLSchema"> 

 <dia:Description msi:timeScale="1000" msi:auMode="tree" xmlsi:timeScale="1000"  

   xmlsi:puMode="ancestorsDescendants" xsi:type="gBSDType" addressUnit="bit" addressMode="Absolute"  

  bs1:bitstreamURI="cdi_qcif_125_PARLIERsvc_201.raw"> 

  <gBSDUnit start="0" length="0" msi:dts="0" msi:cts="1280" msi:au="true" xmlsi:anchorElement="true"  

    xmlsi:absTimeInt="0" msi :rap="true" xmlsi :rap="true"> 

   <gBSDUnit start="0" length="128" marker="T0:S0:F0"/> 

   <!-- ... and so on ... --> 

   <gBSDUnit start="22288" length="72" marker="T0:S0:F0"/> 

  </gBSDUnit> 

  <gBSDUnit start="22360" length="0" msi:dts="80" msi:cts="1360" msi:au="true" xmlsi:anchorElement="true"  

    xmlsi:absTimeInt="80" msi :rap="true" xmlsi :rap="true"> 

   <gBSDUnit start="22360" length="1560" marker="T0:S0:F0"/> 

    <gBSDUnit start="23920" length="6304" marker="T0:S0:F1"/> 

   <gBSDUnit start="30224" length="10784" marker="T0:S0:F2"/> 

   <gBSDUnit start="41008" length="72" marker="T1:S0:F0"/> 

   <gBSDUnit start="41080" length="1920" marker="T1:S0:F0"/> 

   <gBSDUnit start="43000" length="552" marker="T1:S0:F1"/> 

   <gBSDUnit start="43552" length="3048" marker="T1:S0:F2"/> 

   <!-- ... and so on ... --> 

  </gBSDUnit> 

  <gBSDUnit start="62992" length="0" msi:dts="1360" msi:cts="2640"  msi:au="true"  

    xmlsi:anchorElement="true" msi :rap="true" xmlsi :rap="true" xmlsi:absTimeInt="1360"> 

   <gBSDUnit start="62992" length="4456" marker="T0:S0:F0"/> 

   <!-- ... and so on ... --> 

  </gBSDUnit> 

  <gBSDUnit start="107616" length="0" msi:dts="2640" msi:cts="3920" msi:au="true"  

    xmlsi:anchorElement="true" xmlsi:absTimeInt="2640" msi :rap="true" xmlsi :rap="true"> 

   <gBSDUnit start="107616" length="1200" marker="T0:S0:F0"/> 

   <!-- ... and so on ... --> 



  </gBSDUnit> 

  <!-- ... and so on ... --> 

 </dia:Description></dia:DIA> 

Document 2: Example of gBSD with streaming instructions 

The streaming instructions are in bold. After declaring the namespaces which belong to the 

streaming instructions, the timeScale, auMode and puMode are specified in the 

Description element. The inheritance of these properties makes sure that they are valid 

for all gBSDUnits which are children of the Description element. In this application, 

the ancestorsDescendants puMode is used, which specifies that any PU consists of 

the element containing the anchorElement attribute and all its ancestors and descendants. 

The first resulting PU, when applying this fragmentation rule, can be seen in Document 4. 

Investigation of these documents shows that each document describes only a small part (in 

this case an AU) of the media bitstream. However, as we used the 

ancestorsDescendants puMode, the documents correspond to the requirement that a 

PU has to be well-formed and needs to be able to be consumed as such by a terminal. This 

allows us to use normative DIA mechanisms without the need to change them. These PUs are 

then provided to the BSDtoBinAU processor (which is a combination of the normative 

BSDtoBin processor and our media fragmenter), which extracts the AUs, as specified by the 

media streaming instructions and adapts them, as specified by MPEG-21 DIA. 

Alternatively, the properties style sheet provided in Document 3 provides the streaming 

instructions externally, without changing the gBSD itself. As specified in Section 4.3 the 

properties style sheet consists of a sequence of templates specified by a matching pattern 

expressed in LXPath and containing a list of properties defined by a qualified name and a 

value. This properties style sheet sets the same attributes as shown in the example in 

Document 2. 

<properties xmlns="urn:mpeg:mpeg21:200x:01-PS"  xmlns:msi="urn:mpeg:mpeg21:2003:01-DIA-MSI-NS" 

 xmlns:xmlsi=" urn:mpeg:mpeg21:2003:01-DIA-XSI-NS"  xmlns:dia="urn:mpeg:mpeg21:2003:01-DIA-NS" 

 xmlns:gBSD="urn:mpeg:mpeg21:2003:01-DIA-gBSD-NS"> 

  <template match="/dia:DIA/dia:Description">  

   <property name="msi:timeScale" value="1000"/><property name="msi:auMode" value="tree"/> 

  <property name="xmlsi:timeScale" value="1000"/><property name="xmlsi:puMode"  

    value="ancestorsDescendants"/> 

  </template> 

  <template match="/dia:DIA/dia:Description/gBSD:gBSDUnit"> 

  <property name="xmlsi:anchorElement" value="true"/> <property name="xmlsi:rap" value="true"/> 

   <property name="msi:au" value="true"/><property name="msi:rap" value="true"/> 

  </template> 

  <template match="/dia:DIA/dia:Description/gBSD:gBSDUnit[0]"> 

  <property name="msi:dts" value="0"/><property name="msi:cts" value="1280"/> 

   <property name="xmlsi:absTimeInt" value="0"/> 

  </template> 

  <template match="/dia:DIA/dia:Description/gBSD:gBSDUnit[1]"> 

  <property name="msi:dts" value="80"/><property name="msi:cts" value="1360"/> 



   <property name="xmlsi:absTimeInt" value="80"/> 

  </template> 

 <!-- … and so on … --> 

</properties> 

Document 3: Example of Properties Style Sheet 

<dia:DIA < !-- … NS declarations ommited to save space … --> > 

 <dia:Description msi:timeScale="1000" msi:auMode="tree" xmlsi:timescale="1000"  

   xmlsi:puMode="ancestorsDescendants" xsi:type="gBSDType" addressUnit="bit" addressMode="Absolute"  

  bs1:bitstreamURI="cdi_qcif_125_PARLIERsvc_201.raw"> 

  <gBSDUnit start="0" length="0" msi:dts="0" msi:cts="1280" msi:au="true" xmlsi:anchorElement="true"  

    xmlsi:absTimeInt="0"> 

   <gBSDUnit start="0" length="128" marker="T0:S0:F0"/> 

   <!-- ... and so on ... --></gBSDUnit></dia:Description></dia:DIA> 

Document 4: First PU resulting from processing the gBSD in Document 2 

6 Measurements 

In order to validate our work, the system described in Section 5.2 was implemented in C++, 

together with the streaming instructions processors, i.e., the media and XML fragmenter. The 

libxml XMLTextReader interface
3
 (an XML Pull Parser) was used for accessing the XML 

information. The aim of the measurements is to evaluate if our prototype implementation of a 

dynamic MPEG-21 adaptation node can be utilized in a real-time streaming scenario. To this 

end we first measure the performance of the streaming instructions processors and then we 

evaluate the CPU load and memory utilization of the complete adaptation node (depicted in 

Figure 8). All tests were performed on a Dell Optiplex GX620 desktop with an Intel Pentium 

D 2.8 GHz processor and 1024 MB of RAM using Windows XP SP2 as an operating system. 

Time measurements were performed using the ANSI-C clock method.  

Table 4: Characteristics of Test Data 

  MPEG-4 BSAC EZBC MPEG-4 SVC 

Media Size 12511 KB 450536 KB 538816 KB 

Average AU Size 0,22 KB 197,86 KB 18,59 KB 

BSD Size 196265 KB 144939 KB 123189 KB 

Average PU Size 4,02 KB 63,80 KB 4,90 KB 

Number of [A|P]Us 56100 2277 28980 

Resolution N/A QCIF QCIF 

Frame Rate 21 12,5 12,5 

Length in Minutes 44,52 48,58 193,2 

Table 4 provides an overview of the test data. Media and the corresponding BSDs for three 

different media codecs were selected. MPEG-4 BSAC [Pu99] is a scalable audio codec, 

EZBC [HW00] is a scalable video codec based on wavelets and MPEG-4 SVC [SMW06] is 

a scalable video codec based on conventional block transforms which is currently being 

3 libxml; http://xmlsoft.org 



standardized in MPEG. The considerable size differences between the SVC and the EZBC 

content (both media and metadata) are due to the fact that the EZBC was encoded with 6 

spatial layers and the SVC was encoded with only a single spatial layer. For our tests, the 

BSD is provided in the uncompressed domain and we consider that each PU describes 

exactly one AU. We used streaming instructions embedded into the BSD to specify the 

fragmentation mechanism for our measurements. All tests have been repeated 10 times in 

order to get accurate results. 
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Figure 7: Streaming instructions: performance 

For the XML fragmenter the measurements cover: 1) Access to the BSD from the file system, 

2) Parsing the BSD using the libxml XMLTextReader, 3) Compose PUs, 4) Assign timing 

information to the PUs and 5) Encapsulate PUs and their timing into RTP packets. For the 

media fragmenter the measurements cover: 1) Access to the BSD from the file system, 2) 

Access to the media from the file system, 3) Parse the BSD using the libxml 

XMLTextReader, 4) Extract AUs, 5) Assign timing information to the AUs and 6) Output 

AUs and their timing to a file. Figure 7 shows the performance of the media and XML 

fragmenters. Considering that each EZBC AU describes 16 temporal layers (i.e., frames) and 

that each SVC AU describes 5 temporal layers, we can conclude that our prototype 

implementation offers good real-time performance.  

Consequently we measured the performance of the complete adaptation server, as depicted in 

Figure 8. These measurements cover: 1) PU composition and AU extraction as measured 

above – except for step 5 (no file output), 2) BSD-based adaptation to each PU / AU (i.e., a) 

Compute an adaptation decision using the AQoS and the UED(s), b) Transform the BSD PU 

according to the adaptation decision, c) Scale (i.e., adapt) the media AU (e.g., discard 

enhancement layers) according to the transformed BSD PU, d) Update start and length 

information of the BSD PU according to the scaled media AU), 3) Packetize the media AU 

and the BSD PU into RTP packets and populate the RTP header with media and XML 

streaming instructions properties (e.g., timing, random access) and 4) Stream the packets into 

the network. 



We measured the memory utilization and CPU load of our adaptation server. To this end, we 

access a single content (consisting of a media stream and a BSD), which is fragmented 

according to the streaming instructions, adapted, packetized and streamed to the player on the 

end device. We then access another content, and so on, until there are ten streams (five media 

streams and five BSD streams) being processed and delivered concurrently. Figure 8 shows 

the results of these tests for the SVC content. There is a single content being processed for 

the first 40 seconds. Then there are two contents until second 80. From second 80 to 120 we 

see three contents being processed concurrently. After second 120 there are four contents 

being processed and finally (after second 160) there are five contents being processed in 

parallel. At this number we had to finish our measurements, because the PC (a separate node) 

running the players could not support more instances of the player. With 10 concurrent 

streams, the memory utilization is at 20MB and the CPU load is at around 6%. As can be 

seen from the measurements, the adaptation server would have supported several more 

content streams (or contents with a higher bitrate).  
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Figure 8: MPEG-21 based Dynamic DIA Adaptation of 1 to 5 QCIF SVC Streams: Memory 

Utilization and CPU Load 

7 Summary and Future Work 

In this paper, we addressed the problem of processing large metadata descriptions in 

streaming scenarios. To this end we introduced streaming instructions for fragmenting 

content-related metadata, associating the media segments and metadata fragments with each 

other, and streaming and processing them in a synchronized manner. The streaming 

instructions extend an XML metadata document by providing additional attributes to describe 

the fragmentation and timing of media data and XML metadata such as to enable their 

synchronized delivery and processing. In addition, a style sheet approach provides the 



opportunity to dynamically set such streaming properties without actually modifying the 

metadata themselves. We evaluated the implemented mechanisms both as “stand-alone” 

processors and integrated in a specific application scenario. We showed the usefulness of our 

work by implementing an adaptation node which uses our mechanisms to extend the static 

DIA approach to dynamic and distributed usage scenarios. 

The streaming instructions have been proposed for inclusion in the MPEG-21 multimedia 

framework and are currently being considered as an amendment [DDA06]. 

Future work will include further evaluation of the streaming instructions for different types of 

metadata. This may lead to new PU modes and/or streaming instruction properties. The 

current synchronization mechanism relies on time stamps, implying a one-to-one relationship 

between media and metadata AUs. This is not optimal, since metadata AUs are usually much 

smaller than media AUs and the protocol overhead becomes considerable. A more flexible 

synchronization mechanism will be investigated. Research on the robustness of metadata 

channels is a logical next step, since enabling a single metadata AU to describe multiple 

media AUs makes the loss of a metadata AU a much more serious issue than in a one-to-one 

relationship.  
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